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Genetic-based composition algorithms are able to explore an immense space of possibilities,
but the main difficulty has always been the implementation of the selection process. In this
work, sets of melodies are utilized for training a machine learning approach to compute fitness,
based on different metrics. The fitness of a candidate is provided by combining the metrics,
but their values can range through different orders of magnitude and evolve in different ways,
which makes it hard to combine these criteria. In order to solve this problem, a multi-objective
fitness approach is proposed, in which the best individuals are those in the Pareto-optimal
frontier of the multi-dimensional fitness space. Melodic trees are also proposed as a data
structure for chromosomic representation of melodies and genetic operators are adapted to
them. Some experiments have been carried out using a graphical interface prototype that
allows one to explore the creative capabilities of the proposed system. An Online Supplement
is provided where the reader can find some technical details, information about the data
used, generated melodies, and additional information about the developed prototype and its
performance.
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1. Introduction

Genetic algorithms (Holland 1975), or more generally evolutionary techniques, are in-
spired by the biological evolution of living beings and natural selection. It is indeed an
optimization technique in which a population of individuals, that represent different pos-
sible solutions, are subjected to processes that mimic natural crossovers and mutations,
and a selection stage that decides which individuals best fit to solve the problem. Those
individuals are allowed to procreate a new generation of, supposedly, better individu-
als (solutions) until convergence. This basic idea covers a wide range of applications in
engineering and machine learning (Goldberg 1989).

Music composition can be seen as an optimization process, in a way that the human
composer implicitly searches in the space of all possible musical compositions for a com-
position that satisfies his or her own artistic criteria (Dostál 2013). Evolutionary-based
algorithmic composition has always been well appreciated by researchers and composers
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due to their capability to stochastically explore an immense space of possibilities (Todd
and Werner 1998). This is especially due to the mutation operator, that enables them to
model something hardly computable like “inspiration” (something very vague that can
be viewed as “finding something of artistic value by chance”). An interesting overview
of the field can be found in the work of Miranda and Biles (2007).

In this paper, we aim to use machine learning techniques based on a training set of
examples to implement an automatic fitness function. In the literature, this is considered
to be one of the subtlest aspects of such systems (de Freitas, Guimarães, and Barbosa
2012). For that, we will try to assess different properties of melodies, some of them
statistical, some music theoretical, combining them via the multi-objective optimization
paradigm. This approach permits us to define a fitness space, rather than just a fitness
function, where values that may be disperse can be put together in an elegant and easy
way, in order to guide the composition process of the evolutionary system.

1.1. Background: evolutionary computation in music composition

Evolutionary computation in general, and genetic algorithms in particular, have been
used in arts over the years (Romero and Machado 2007), with growing interest. Biology-
inspired computing techniques offer a metaphoric context for using nature as a source of
inspiration, providing ideas and methods for finding other ways of solving problems and
discovering new ways of creation.

In the case of algorithmic music composition, from the pioneering works of Xenakis
(1992) or Hiller and Isaacson (1959), three main approaches have been used (Nierhaus
2008):

a) stochastic methods, in which probability distribution functions are utilized to generate
events that can be mapped to pitches, durations, or any other kind of psychoacoustic
properties of music (like timbral or dynamical, for example);

b) deterministic methods, that are based on rules (usually derived from musical methods
or from mathematical theories) or sonification methods, by which mathematical func-
tions (fractals, non-linear dynamic systems, chaos theory, cellular automata, etc.) or
signals and models coming from other areas of knowledge (physics, biology, geology,
etc.) are used as data for being mapped to music parameters by using systematic
transformations; and

c) machine learning (or data-driven) methods, in which by using any kind of adaptive
algorithm, usually based on examples of a music style or genre, the system makes
its own model that is able to generate new data related to those previously used for
training.

Of course, hybrid systems have also been proposed, providing very interesting re-
sults (Cope 1991), exploiting the best qualities of each approach, at the cost of increasing
the system’s design complexity.

Genetic algorithms (GA) belong to the third category of methods, where the compo-
sition process is guided somehow, aiming towards a particular kind of music. The main
constituent parts of a GA are a representation for chromosomes (the candidate solutions),
an initial population of chromosomes, a set of operators to generate new candidates, an
evaluation function, and a selection method.

The most usual representation of a musical chromosome is a vector of numbers (often in
binary code), representing pitch and duration information. Some authors have explored
other approaches, like analytic functions (Laine and Kuuskankare 1994), languages like
abc (Oliwa 2008), or motives represented by patterns (Liu and Ting 2015). More often,
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trees have also been used (Phon-Amnuaisuk, Law, and Ho 2007; Komatsu et al. 2010;
Hofmann 2015), but always in the context of a genetic programming approach, where
the trees are representing a string in a language, formally represented by a syntax, so
they are actually, parsing trees. In the present work, we introduce the use of melodic trees
for this task, as a structured representation of a monophonic series of notes. Although
the trees in the GA implementation are defined by a grammar, they represent structural
melodic trees. We will need to define the proper genetic operators, adapted for this
representation.

1.1.1. Style-oriented approaches

Music style is a vague concept that can be interpreted in a number of ways, all of them
subjective. Some authors consider the music style as the set of music compositions that
provide a given emotion (aggressive, calm, romantic, etc.) while others focus on music
genre as the set of authors or pieces sharing some common characteristics.

A style-guided genetic composition scheme can be achieved by using machine learning
algorithms and a corpus of training data from a music genre, a given author, or even
particular tastes, to implement fitness functions or any kind of guidance in the composi-
tion process (Weale and Seitzer 2003; Alfonseca, Cebrián, and Ortega 2007; de Freitas,
Guimarães, and Barbosa 2012). Thus, the same overall scheme can be used to generate
very different melodies just changing the training data. Such a corpus must be tagged
before. This is usually done by a human, so a subjective factor is introduced.

1.1.2. Human supervised fitness functions

One of the key aspects of every evolutionary system is the design and implementation
of the fitness functions. This is particularly tricky when the individuals that are being
evaluated are artworks, although there are systems like GenDash (Waschka 2007), that is
a GA without fitness evaluation, where the individuals are selected at random to the next
generation, avoiding what is considered by the author as the bottleneck of evolutionary
systems. There is not an ultimate evaluation system; even the impressions of some persons
listening to the same music can be different and, therefore, the results of automatic
composition are subjective.

The aid of human skills for that permits to model the musician’s taste and even web-
based human assessment of the individuals have been described in the literature (Putnam
1996; Tokui and Iba 2000; Fu et al. 2006; Ayesh and Hugill 2005; Özcan and Erçal
2007; Zhu, Wang, and Wang 2008; Koga and Fukumoto 2014). Sometimes, the user
is needed because the system is oriented to user interaction, like in the case of the
GenJam system (Biles 1994), but sometimes the user is needed because the system is
expected to accelerate the optimization by the user actions (Koga and Fukumoto 2014),
like evaluating, removing, or even changing the melodies generated at a given generation.
In (Zhu, Wang, and Wang 2008), the system is focused on capturing listener feelings,
like happiness and sadness, although the user works in cooperation with a rule system
to calculate the fitness values.

In most of these cases, the populations are reduced to a very small number of individ-
uals. It is obvious that evaluating hundreds or thousands of music works is not feasible,
even when many users are involved, like in (Ayesh and Hugill 2005). Anyway, when hu-
man critics are used, these evolutionary systems can produce pleasing and sometimes
surprising music, but usually after many tiresome generations of feedback (Todd and
Miranda 2003).
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1.1.3. Autonomous fitness functions

Given the problems and limitations of human-supervised assessment, there are many
works in the literature that deal with the problem of designing fully automatic evaluation
functions that can operate without human intervention. This idea of automatic evaluation
of music (and artworks in general) has received the name of a virtual “critic” (Machado
et al. 2003).

Some works (Wiggins et al. 1998) use music-theoretical knowledge as a fitness function,
like Moroni et al. (1994), who use a fitness criterion that takes into account melodic
fitness, harmonic fitness, and voice range fitness. Other previous works try to induce
musical structure from a corpus to get new melodies (Cope 1991). An extension of this
procedure was done by Spector and Alpern (1995), who applied a hybrid rule-based and
neural network critic trained with a corpus of well-known works, and Baluja, Pomerleau,
and Jochem (1994) who also used a similar combination of neural and genetic techniques.

Language models, like n-gram models (Lo and Lucas 2007; Herremans, Sörensen, and
Conklin 2014) have been used as trainable music critics to impose constraints on the
space of pitches and intervals that can be explored by the genetic algorithm. This idea
will be also explored in the present work.

Neural techniques have been widely used to implement fitness functions. For example,
in (Sheikholharam and Teshnehlab 2008) recurrent networks are used both for generating
pitch sequences and for evaluation, in particular to cope with the problem of long-term
melodic relations, which is impossible to capture using language models, like n-grams.
In (Göksu, Pigg, and Dixit 2005) multilayer perceptrons are trained to recognize music
of a given genre. Also, Self-Organised Maps were used in (Phon-Amnuaisuk, Law, and
Ho 2007), exploiting their ability to map music representations into feature visualization
spaces.

1.1.4. Multiple fitness values

A valuable approach that is currently gaining ground is the use of different fitness func-
tions, each of them specialized in a particular aspect of evaluation, providing different
values that are combined to get a better combined fitness. The key point here is to find
an appropriate way of combining those values.

For example, in (Ayesh and Hugill 2005), the selection process is guided by the re-
sponses of the users within an interactive process. The individuals are rated by 3 different
factors that are combined by simple summation into a single fitness value. In the context
of automatic fitness, in (Özcan and Erçal 2007), multiple musical aspects are evaluated:
10 fitness functions are computed and then combined by using a weighted sum of their
respective evaluations. Hofmann (2015) introduces the concept of multi-objective evalua-
tion, that is central in the present work, but what that author actually did is look for the
optimum of each of the 11 statistical and 6 structural fitness function modules utilized.
Each function is considered as a vector dimension and the system tries to optimize a
weighted distance from each individual to the optimum vector.

A proper strategy for combining the different values provided by a number of fitness
evaluation functions is needed. Summing them is not appropriate since they can differ
even in orders of magnitude, and therefore it is not straightforward to find a suitable
way to merge them into a single criterion.

It is at this point where a multi-objective optimization (MOO) approach to establish an
ordering relation among individuals is useful, taking into account the whole set of criteria
simultaneously. Although the combination of multi-objective optimization with genetic
algorithms has been widely studied Purshouse et al. (2013), the proposed application
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for music composition is innovative. In the context of music recognition, a previous
work (Vatolkin 2013) used MOO for prediction of high-level music categories, such as
genres, styles, or personal preferences. That author measured the impact of evolutionary
multi-objective audio feature selection on the classification performance, leading to a
significant reduction in the classification error.

1.2. The present approach

In the present approach, two main novelties are introduced. The first novelty is the use
of a tree data structure (Rizo 2010) for coding the individuals. Although, as discussed
above, trees have been used before in evolutive composition, they have been always used
for coding a programming language string as a formal grammar, so they are actually
a tool for implementing genetic programming methods. Standard genetic programming
mutation and crossover operators are applied on this data structure. In our case, a tree is
a representation of a melody that will compete for survival. The target will be melodies
of a fixed length in bars (8 bars by default). A proof of concept of this approach was
already presented in a former work (Hidden 0000).

The second novelty of the present paper is the combination of different fitness functions
by means of a multi-objective optimization method, that is able to combine multiple and
diverse values in order to rank the individual in a single fitness space. This way, the
individuals are not ranked by their fitness values, but instead, by their position in the
fitness space. This way an optimal locus is defined by some of the individuals that will
be ranked as the best adapted. After them, other individuals will be in the ranking by
selecting the best after removing the former ones from the fitness analysis. And so on.

The fitness dimensions in this space will be provided by example-based machine learn-
ing models, some of them based on statistical properties of the melodies, others based
on statistical language models, and others designed on top of musicology rules, trained
from the melodic examples contained in a provided training set.

2. Methods and tools

2.1. Melody tree representation

There are several ways of coding a melody (Selfridge-Field 1997). In this work, we use the
tree encoding proposed by Rizo (2010), extended with the addition of levels for sections
and measures. That model is based on the representation of the rhythm structure as a
tree. Each bar is represented as a sub-tree, depending on its meter. All these sub-trees are
linked together in a common tree, with a binary or ternary arity, depending on the kind
of meter. The level of a node determines its duration: the root represents the duration
of the whole melody, the nodes of the next level represent a division of the upper node
that, together, sum up its same duration.

Pitch codes are found in the leaves of the tree. Any kind of absolute or relative pitch
could be used. For this particular application, pitch classes, together with rest and con-
tinuation symbols, have been used: pi ∈ {C,C]/D[,D, . . . ,B}∪{rest, continuation}. Some
pitch classes from the whole chromatic scale can be selected, if required.

These two extra symbols are used for coding rests and the continuation of a note
beyond its natural duration, like in the case of syncopations, ties or dotted notes (see
Figure 1 for an illustration). The left to right ordering of the leaves encodes the onset
times of the notes in the melody.
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Figure 1. A short melody example and its corresponding tree representation as a section of what can be a longer
melody. The labels in the leaves correspond to pitch classes, including ‘r’ for rests, and ‘−’ for continuations. ‘S’

denotes a section, ‘M’ is a measure node, and ‘∧’ represents every inner node (beat or sub-beat) that splits.

Without loss of generality, we shall restrict this study to binary trees, representing
binary subdivisions in measures and beats, diatonic pitches from the major scale, and
maximum depth for the trees corresponding to a sixteenth note.

Another interesting feature of this coding is that it is very easy to change the structure
of the melody tree representation in the genetic algorithm, by changing the underlying
grammar in a configuration file. Currently, the structure that is being used is as follows:

Melody := Section Section
Section := Measure Measure Measure Measure
Measure := (Beat | Symbol) (Beat | Symbol) (Beat | Symbol) (Beat | Symbol)
Beat := (SubBeat | Symbol) (SubBeat | Symbol)
SubBeat := Symbol Symbol
Symbol := Pitch | Rest | Continuation
Pitch := C | D | E | F | G | A | B
Rest := r
Continuation := _

but it can be changed by specifying another structure to the system.
Note that one of the main advantages of this representation is that it is not possible

to generate invalid representations when crossover operations mix the chromosomes of
the different individuals, which is very useful in the evolutionary paradigm.

2.2. Evolutionary algorithms with trees

Each individual of our population will be a 4/4 meter, 8-bars long, monophonic melody
coded as a binary tree, as described above.

The size of the population is a free parameter of the system. The population is initial-
ized at random following the tree generator procedure proposed by Koza (1992), and the
evolutionary search loops. Hypothetically, better compositions are obtained through the
evolutionary crossover and mutation operators. Individuals are evaluated and selected so
that only those who encode the best solutions, according to their fitness, can survive for
the next generation.

The crossover operator creates two individuals (children) from two existing ones of
the previous generation (parents). The idea is that the children contain features of their
parents, but represent new melodies. For this, one non-leaf node is randomly selected in
each of the parents. The whole sub-tree hanging from the selected node is interchanged
by that in the other parent tree. Due to the representation utilized, the bar length is
preserved. Measure nodes can also be interchanged by crossover (see Figure 2).

The mutation operator is applied on each individual separately. It consists of randomly
changing its chromosome. Each node of the tree has a small probability of being modified.
In that case, the mutation operator generates a sub-tree whose root is compatible with
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Figure 2. Illustration of the crossover operator applied on 1-bar trees in 4/4, and the effect on the melodies they

represent. The two parents are those displayed on the left, and on the right the two children are shown. A node

is selected for both parents (thick node borders) and the sub-trees are interchanged.

the kind of the selected node, according to the grammar structure displayed above in
Section 2.1.

By applying these operators, an offspring is created from a population of size N . It
is done as follows: 90% of the times, a series of two tournaments of seven individuals,
randomly chosen, are carried out. The winners of each are used as parents for a crossover
process, breeding two new individuals. This procedure is repeated until generating N
individuals. The new individuals are assessed and ranked together with their parents. In
the remaining 10% of the times, the population is simply cloned. Note that, whatever
the case, the size of the original population is doubled.

From the new individuals generated by the crossover, the mutation pipeline is com-
puted. It consists in performing tournaments of 7 individuals for which the winner is
mutated. At the end, each mutated individual will be evaluated by the set of selected
fitness metrics, as it will be described in the next sections.

At the end, only the best N individuals among the parents and the offspring are kept to
maintain the size of the population. The survivals are considered for the next generation.
The process starts over again, until reaching a maximum number of iterations, that can
be set by the user.

2.3. Automated feature extraction and fitness

One of the goals of this work is to study how to use different machine learning techniques
to rate evolutionary generated music according to the parameters tuned from melodies
in a set, that supposedly share some common properties, like genre, style, mood, etc. For
that, the evolving melodies have to be described using the features that are the input to
those assessment systems.

In this regard, we have considered three families of fitness evaluations.

a) Global statistical descriptors that embed the melodic tree in a vector space represent-
ing the whole melody as a point. This way, similarities can be computed as distances
in such a space;

b) Local n-gram probabilistic models for assessing how likely some notes can be used
together in a short-term context; and

c) Music theory-based melodic evaluations, in order to introduce domain-specific knowl-
edge in the fitness evaluation process.

These three families comprise a total of 12 separate fitness functions. By using these
functions, we create a fitness space in which the multi-objective optimization algorithm
is used to select the best individuals. The final user may decide to use all or a part of
those functions. For that, a graphical interface has been designed for experimentation
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that will be introduced in the experiments and results section.

2.3.1. Global statistical evaluations

The first model is the global shallow description scheme (Ponce de León and Iñesta 2007).
In this case, an individual melody is represented as a vector of statistical descriptors that
are related to melodic, harmonic, and rhythmic properties of the melody, by analysing
how pitches, silences, durations, inter-onset intervals, pitch intervals, diatonic notes, and
syncopations are distributed in the melody (the reader is referred to the paper cited
above for details).

In this particular implementation we have selected the following descriptors, grouped
by the kind of musical property they are describing.

• Notes: total number of notes and average number of notes per beat.
• Rests: total number of silences.
• Pitches: average pitch relative to the lowest one and typical deviation.
• Pitch intervals: largest, range of interval sizes, average, typical deviation, most repeated

one, and number of different intervals.
• Durations: occupation rate (sum of note duration versus total duration), duration

range (from shortest to longest), average duration relative to the shortest note, and
typical deviation.

• Inter-onset intervals: range (from shortest to longest), average relative to the shortest
one, and typical deviation.

• Rest durations: range (from shortest to longest), average relative to the shortest rest,
and typical deviation.

• Syncopations: total number of syncopated notes and rate (syncopated versus total
number of notes).

These descriptors create a vector x ∈ R23. This way, the melodies xi in the training
set X are represented as a cloud of points that are our target style. Under the hypothesis
that new melodies of that style should be close to those already existing, the distance
from the vector m representing each evolving melody to the cloud is given as a measure
of style for it.

The global centroid of the cloud, c = 1
|X |

∑
i xi, can be a target for that matter, but

if all the population mj tries to minimize the distances dc = d(mj , c), this may not
favor diversity. For that, the distance to be minimized should be more local, and we have
considered the distance to a neighborhood of size k of each individual, in such a way
that a local centroid is computed as ck = 1

k

∑k
i=1 xi and the distance to be minimized

is dk = d(m, ck). The problem with this approach is that the point m may be far from
the global centroid, that is supposed to be a good reference for the style of music being
represented. Taking into account the pros and cons of the two approaches, both distances,
dc and dk, have been used for computing fitness functions to be minimized.

In any case, the features computed are very different, so in order to cope with the
variety of ranges and dispersions they may show, the Mahalanobis distance has been
used:

d2
c(m, c) = (m− c)TΣ−1(m− c)

d2
k(m, ck) = (m− ck)

TΣ−1(m− ck)
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where Σ is the covariance matrix in R23×23 computed from X .
Once the proposed distances are computed as d2 = {d2

c , d
2
k}, the fitness values Fglobal,d

are normalized by using

Fglobal,d = 1− 1

1 + d2
=

d2

1 + d2
.

This value is what the genetic algorithm will try to minimize.

2.3.2. Local musical n-gram evaluations

The fitness functions Fglobal,d provide a global statistical context for the possible melodies,
driven by the training examples represented in the feature vector space. Nevertheless,
there are still a huge number of melodies that could give the same global statistics, so a
more local, restrictive, view is needed. This way, more restrictive constraints are imposed
on adjacent notes. We could say that proximity to the cloud representing the training
set provides a necessary condition but not a sufficient condition for a melody to sound
style-like.

An n-gram model is a statistical language modeling technique widely used in natural
language processing, that works under the Markov assumption that the probability of
a symbol depends only on the probability of a short-term history of previous symbols.
Each parameter is the probability of a symbol si to appear after seeing the sequence
of n − 1 symbols si,n−1 = si−n+1si−n+2 . . . si−1. This probability is estimated from the
relative frequency of the string si,n = si,n−1si in the training set, as

P (si|si,n−1) =
N (si,n−1si)∑
s∈AN (si,n−1s)

.

Here A is the alphabet of possible symbols from where si can take values, and N is a
counting function. One of the problems with this approach is that, if a sequence of n
symbols does not appear in the training set, its probability is zero and therefore, the
probability of any sequence in which it may appear will also be zero. To solve this prob-
lem, the probability distribution is smoothed by using the Kneser-Ney method (Kneser
and Ney 1995), reallocating some probability mass from the 3-grams or 4-grams utilized,
to simpler unigram models.

Once we have the n-gram model probabilities inferred, we can assign a probability to
a new sequence S of |S| symbols by computing

P (S) = Pn−1(s1 . . . sn−1)

|S|∏
i=n

P (si|si,n−1) ,

where Pn−1(s1 . . . sn−1) denotes the probability of a string beginning with the n − 1
symbols that cannot be computed with the n-gram model, and is estimated by looking for
how often the strings in the training set begin with that sub-string, N (s1 . . . sn−1)/N (S).

The length of the string coding the melody, |S|, is an issue in this case, because the
lower the number of n-grams, the higher the probability will be, and vice-versa. To cope
with that problem, the length of the melody is also modeled as a Poisson distribution

p(|S|, λ) =
e−λλ|S|

|S|!
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where the expected value for the length, λ, is estimated from the melodies in the training
set, X . So eventually, the probability of a sequence S will be

P (S) = p(|S|, λ)Pn−1(s1 . . . sn−1)

|S|∏
i=n

P (si|si,n−1) ,

For using these models in our case, we construct strings of symbols (n-words) (Do-
raisamy and Rüger 2003) from n consecutive notes in the tree representation as a string
of n−1 intervals coded by symbols in an alphabet AP and n−1 inter-onset ratios (IOR)
coded by symbols in an alphabet AD (see details in the cited paper). This way, for ex-
ample, a series of n = 3 notes is coded in a coupled representation of relative pitches
and durations by 4 characters in a ‘3-word’. There is also the possibility of de-coupling
the representation by computing separately 3-words with the 2 intervals and with the
2 inter-onset ratios. This may be useful if the data available are limited, because for
the coupled representation, the cardinality of the alphabet is |A| = (|AP | × |AD|)n−1,
while for the decoupled representations the cardinality of the alphabet is just |AP |n−1 or
|AD|n−1. These lower cardinalities make the parameters easier to learn from the training
melodies.

All possible n-words are extracted from an individual melody, except those containing
a silence lasting four or more beats, that are ignored. From the melody coded as a series
of n-words, the n-gram sequence, S, of n-words is analyzed and its probability P (S) is
computed, and the fitness function will be

Flocal,n−gram = − logP (S)

for n = {3, 4}, and for the coupled (intervals and durations together) and decoupled
(either for intervals or IORs) versions of the n-words coding.

2.3.3. Local bag-of-notes evaluations

The other approach to style modeling is similar to that above in terms of coding n notes
into a series of characters by using a n-word, but focuses on how probable a string based
on the probability of appearance of substrings of n-words is, rather than in the order of
how they appear, like in the former case.

The same n-word based representation described above for a melody (only the coupled
version for n = 3) is now evaluated probabilistically by a multinomial distribution model,
that takes into account n-word frequencies in the string. In this model, each melody is
encoded as a vector s ∈ N|V|, where V is the vocabulary made of the most frequent
n-words found in the training set, and each component st represents the number of
occurrences of the n-word wt in the melody.

The same problem with the string coding length |S| as in the former case is present here,
so shorter notes would imply less products, and therefore, always higher probabilities, so
a new Poisson distribution is estimated from the training data, p(|S|, λ), by computing
the average number of n-words found in 8-bar melody segments.

The probability that the whole series of n-words in the melody has been generated by
the multinomial distribution found for the melodies in the training set X is

P (s|X ) = p(|S|, λ)|S|!
|V|∏
t=1

P (wt|X )st

st!
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and the conditional word probabilities are estimated as

P (wt|X ) =
1 +Nt

|V|+
∑|V|

k=1Nk
,

where Nt is the sum of occurrences of word wt in the melodies of the training set.
Like in the former case, once the P (s|X ) is computed, the fitness function will be

Flocal,multi = − logP (s|X ) .

2.3.4. Melodicity fitness evaluations

A complementary approach to the fitness evaluations described in the sections above is
based on elements of music theory, that permits one to implement knowledge specific
to the application. Music theory provides a general conceptual framework, that can be
adapted to the data in a training set, by learning parameter values and distributions.

The kind of evaluations we are going to perform are two-fold: on one side, a melodic
analysis that tags the notes in the melody as harmonic or non-harmonic (with sub-classes)
and then a language model inferred from the training data is applied over the tags, and
on the other side, a segmentation algorithm is applied and the number of segment is
compared to the number of segments found in the training set for melodies of the same
length.

Melodic analysis

Melodic analysis determines the importance and role of each note in a particular harmonic
context. Thus, a note is classified as a harmonic tone (‘H’), when it belongs to the
underlying chord, and as a non-harmonic tone otherwise, in which case it should be
further assigned to a category, such as passing tone (‘P’), neighbour tone (‘N’), suspension
(‘S’), and appoggiatura (‘A’). There are more possible categories (see (Willingham 2013)),
but the ones considered here are those based on the stability of the beat and the intervals
before and after the analysed note. There are other kinds of non-harmonic notes but the
features required for performing the analysis need harmonic information, like chords,
that are not available for a monodic melody (see (Rizo, Illescas, and Iñesta 2015) for
details).

A n-gram model is constructed from the series of melodic tags obtained when the
fragments of 8-bar melodies in the training set are analysed. The same approach as
in Section 2.3.2 is applied to the 5 tags, listed above AA = {‘H’,‘P’,‘N’,‘S’,‘A’} and the
probability P (A) of the analysis sequence A ∈ AA? of an individual is computed. From it,
Fmelodic,n = − log(P (A)) is established as a fitness value to be minimized for n ∈ {3, 4}.

Melodic segmentation

The local boundary segmentation model (LBDM) (Cambouropoulos 2001) is a simple
and well-known algorithm that permits one to partition a melody into segments using
the sizes of intervals, the length of notes, and the length of silences. These three measures
are weighted by normalized coefficients, wi that tune the algorithm’s behaviour. We have
heuristically set them to w1 = 0.6, w2 = 0.2, and w4 = 0.2, respectively, in order to give
more importance to intervallic relations. The threshold over the boundary strength for
local maxima detection was θ = 0.3.
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An excessive number of segments, σ, denotes a lack of coherence in the melody, while
a very low number of segments is an indication of a dull, flat melody. In any case,
the good number of segments depends on both the total length of the melody and the
style of music. In order to adapt this to data, we have made a statistical study on how
many segments per fragment are in the training set, considering melodies of the same
length of those generated by the genetic algorithm (8 bars in this case). A new Poisson
distribution P (σ) = p(σ, λ) was estimated from the number of segments, and the fitness
to be minimized will be 1− P (σ), in order to favor a number of segments close to λ.

2.4. Multi-objective optimization

Without loss of generality, we are going to consider that optimizing a function refers to
its minimization. Therefore, a typical optimization problem can be defined as finding an
x̂ such that

x̂ = arg min
x∈S

f(x)

in which S stands for the set of solutions that fulfill the implicit constraints of the
problem.

Quite often, applications require us to have multiple functions or objectives to be
optimized at the same time. In fact, a total number of F = 12 fitness functions have been
proposed to implement the evaluation of a music composition. Then, the optimization
problem is reformulated as

x̂ = arg min
x∈S
{f1(x), f2(x), . . . , fF (x)} .

In this case, the definition of optimal solution cannot be directly taken from the scalar
concept of the single-objective optimization. When multiple functions have to be opti-
mized, simultaneously, optimality is defined through the concept of dominance.

Definition 2.1 A solution x1 is said to dominate another solution x2 if, and only if, the
following conditions hold:

(1) The solution x1 is better or equal than x2 in every single objective function.
(2) The solution x1 is strictly better than x2 in any of the objective functions.

The set of non-dominated solutions, those for which no one dominates them, is referred
as Pareto frontier. The elements within this set have the property of being Pareto-
optimal, which means it is impossible to make an improvement in one criterion without
making at least another one worse.

In this paper we are interested in developing an evolutionary algorithm that is able
to optimize several functions simultaneously. Hence, the solution space is not explored
exhaustively but new points are obtained through iterative generations of an evolutionary
search. To make this process generate solutions that converge to the optimal values, it
is necessary to establish an order relationship among individuals in the population that
allows selecting those most promising in relation to the concept of Pareto-optimality. To
this end, this work follows a multi-objective evolutionary scheme.

A number of ways of addressing this problem have been proposed over the last years. In
a first batch of algorithms (Srinivas and Deb 1994; Schaffer 1985; Horn et al. 1994), non-
dominated individuals of the population were kept through the evolutionary generations.

12
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Although these strategies were able to find Pareto-optimal solutions, the set of surviving
individuals tended to concentrate on a small portion of the target space, in which only
one of the functions is actually optimized. That is why a second group of algorithms
arose (Zitzler, Laumanns, and Thiele 2001; Deb et al. 2002), which also promoted the
diversity of solutions throughout the Pareto frontier. An example of this algorithm is the
Non-dominated Sorting Genetic Algorithm II, which will be used in this work. The next
section briefly describes the operation of this algorithm given its interest in the present
paper.

2.4.1. Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm II (Nsga-II) is an efficient multi-objective
optimization evolutionary scheme proposed by Deb et al. (2002). Although it was devel-
oped for genetic algorithms, Nsga-II can run on any evolutionary search that contains
evaluation and selection processes, as it focuses on establishing a relationship of order or
priority among individuals in the population according to their multi-valued fitness.

The general operation of the algorithm is to divide the individual into fronts of non-
dominance. In the first front the algorithm finds those individuals are found that are
non-dominated (Pareto frontier); in the second front, those individuals who would form
a new optimal frontier in the absence of the individuals of the first one; and so on. These
fronts are iteratively created until every single individual in the population is assigned
to one.

Once this process is over a new relationship is established, but only among individu-
als belonging to the same rank. For this purpose, Nsga-II defines a crowding distance
function to estimate the diversity that brings each of the individuals within that frontier.
The idea is to favor those individuals that provide a higher variety of solutions.

Formally speaking, Nsga-II defines a partial relation among the individuals of the
population. Let P = {p1, p2, . . . , p|P |} be a population. We denote by r : P → N the
front assigned to an element of P and by c : P → R∗ the crowding distance function.
Nsga-II establishes a partial order (�) among the elements of P such that

pi � pj ⇔ (r(pi) < r(pj)) ∨ (r(pi) = r(pj) ∧ c(pi) > c(pj)) (1)

Therefore, when the evolutionary algorithm reaches the selection step, individuals of
the population, as well as the offspring generated from the crossover and mutation oper-
ators, are divided into non-dominance fronts (F1, F2, . . .). Within each rank, individuals
are ordered according to the crowding function. Eventually, the selection operator takes
the individuals in descendant order until reaching the criteria established to maintain
the population size for the next generation.

3. Experiments and results

It is very difficult to show and evaluate the performance of a system that is designed to
generate artworks. We can show that there are signs of convergence: the fitness functions
that have to be minimized are actually decreasing their values, the Pareto optimal front
is getting closer to 0 in the fitness space, etc. Next, some of these indicators will be pre-
sented. But, in addition, it is very important to be able to experiment with the different
fitness functions and parameters, specially in the case of techniques like evolutionary
computing that has so many free parameters.
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Figure 3. Evolution of the Pareto optimal frontier over the generations. It is depicted for two pairs of fitness

functions. Left: Flocal,multi and Fglobal,dc , right: Fglobal,dc and Fglobal,dk . It starts closer to the upper-right corner
and it moves towards (0,0). The Pareto frontier at the end of the iterations is highlighted.

For that, a graphical interface prototype implemented in Java has been developed (see
the Online Supplement for details). The genetic algorithms were programmed using the
Java-based Evolutionary Computation Research System (ECJ) library.1 All the mathe-
matical calculations were programmed from scratch, except for the n-gram models, for
which the BerkeleyLM library (Pauls and Klein 2011) was used.

The prototype permits one to select a training dataset in the form of single-track
monophonic MIDI files contained in a folder. Some information about the datasets used
for testing our system is provided in the supplemental online material. There is also
the possibility of changing the configuration parameters for the genetic algorithm by a
configuration file in text format. The prototype is available for download in the URL
provided.2

Concerning the running time, it takes about 1 minute on an iMac with a 2.7 GHz Intel
Core i5 processor to run a 1 000 generations evolution of a population of 100 individu-
als, using the 12 different fitness functions that can be utilized. If only 4 functions are
used (one global, one local n-grams, one local multinomial probability, and one melodic
segmentation) the running time is reduced to 24 seconds for the same population and
generations.

Figure 3 displays how the Pareto optimal frontier evolves over the generations for
two pairs of fitness functions. Note how it gets closer to the origin (the algorithm is
minimizing the functions), with longer jumps at the beginning and then stabilizing in
the last generations. It is not possible to represent the actual Pareto frontier in the 12-
dimensional space, but just a selection of two dimensions, like those in Figure 3. There
are more plots of the fitness evolution for pairs of functions in the online supplement.

3.1. Single fitness function analysis

In this section, salient features of phenotypes obtained by the application of single ob-
jective functions to the population are described. The fitness functions were trained on
a dataset made up of MIDI files of popular music melodies from three subgenres: blues,
pop, and celtic music. The system is designed to produce 8-bar melodies in the 4/4 meter.

The melodic phenotypes are described qualitatively in terms of their:

structure - presence of repeated melodic patterns,

1https://cs.gmu.edu/~eclab/projects/ecj/
2http://grfia.dlsi.ua.es/gen.php?id=software
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segmentation - presence of phrase boundaries within the melodic sequence,
pitch - presence of implicit tonality, pitch variety, size of intervals ,
note durations - most frequent note durations, or IOI, and
convergence - has the system converged to local minima? Is phenotype variety pre-

served across generations?

The analysis is done manually, in search of strong evidence for the melodic features
described above in the best individuals from the final population of several runs.

Structure. The n-gram based local evaluators produced melodies which often have re-
peated patterns. It is also the case with global statistical evaluators, although the re-
peated patterns were of shorter length, on average (for example, half a measure).

Segmentation. Both segmentation and melodic analysis evaluators produced phenotypes
with clear phrase boundaries. Global statistical evaluators, on the other hand, seldomly
generated phrase boundaries. There was no clear evidence of those boundaries in pheno-
types produced by other evaluators.

Pitch. Segmentation and local evaluators based on n-grams using pitch information often
produced individuals with an excess of unisons. However, when duration-based n-grams
were used, there was no such problem. Local bag-of-notes models produced degenerated
melodies containing often a single n-gram or no notes at all. Melodies generated by
melodic analysis evaluators often had a sense of tonality, with evidence of pitch vari-
ety, but with rare presence of intervals wider than a fifth. Global statistical evaluators
produced a fair variety of pitches in melodies.

Note durations. Higher variety in terms of note durations was found when using
global statistical evaluators, while the others tended to produce rhythmically monotone
melodies. Local n-gram models based on duration, for example, mostly produce melodies
containing quarter and half note durations. Segmentation fitness produced many more of
sixteenth notes compared to other evaluators, while the rest of criteria produced mainly
eight or quarter notes.

Convergence. Figure 4 shows two examples of fitness convergence from different evalu-
ator functions. Local bag-of-notes, melodic analysis, local n-grams based on pitch and
duration, and local n-grams based on pitch-only evaluators exhibited a fast convergence
(less than ten generations, on average) to local minima when tested in isolation. Local
n-grams based on evaluators converge slowly, while global statistical functions converged
at slow rates, an indication that they are less prone to be trapped too soon on local
minima. When used as single fitness evaluators, all functions led the evolutionary pro-
cess to converge to local minima most of the times, and produce a rather homogeneus
population.

3.2. Combined fitness function analysis

When considering pairs of fitness functions, the outcome improved with respect to the
performance when using them in isolation, but they still fell in local minima. For example,
when one of the evaluators uses trigrams based on pitch, still appear flat melodies, with
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Figure 4. Fitness convergence and best individual from last generation. Left: Fast convergence of fitness for a
Flocal,4−gram evaluator function. Right: Smooth convergence for a Fglobal,dc . Both evaluators were trained on a

dataset of popular music. See the supplemental online material for details of the dataset.

many successive unisons.
By combining all families of evaluators, the results were closer to what one might

expect. Even so, melodies clearly affected by the features inherent to certain fitness
functions appear, but these are often compensated by other evaluators. For example,
the result of using an evaluator that tends to produce flat melodies in terms of pitch or
monotonous durations of the notes, may be balanced by other evaluators, that favor the
dispersion of pitches and durations. Those evaluators that contribute to the repetition of
patterns and tend to produce excessive repetition, can help in producing some structure
in the melody. On the other hand, its harmful effect is mitigated by functions that favor
the melodic diversity. In any case, this operation is heavily modulated by the data used
as the basis for the training of evaluators.

4. Discussion and conclusions

Genetic algorithms present interesting features for music creation. Systems like those
presented here can be useful for generation of interesting musical ideas that can be
developed or refined by human composers.

The main issue with this kind of techniques has always been how to evaluate the fitness
of maybe hundreds of candidate individuals along thousands of generations, what makes
the participation of human assessments in this kind of systems unfeasible in practice,
unless the size of the population is reduced to a few individuals. Machine learning and
pattern recognition techniques permit one to define style-based automatic evaluation
functions, considering style as something in common that a set of melodies may have.

In this paper, we have proposed a number of diverse evaluation functions. Some of them
try to describe statistically the notes and silences in a melody, comparing it with those
in a training set by distance in a vector space. Other kinds of functions intend to limit
the number of possibilities by introducing statistical language models inferred from the
training set with the aim of giving a very low probability to melodies containing series of
notes that seldom or never appear in the reference melodies. Finally, music theory-based
evaluations are proposed that, by using melody segmentation algorithms or models of

16



November 2, 2016 Journal of Mathematics and Music main

melodic analysis tags, try to favor those melodies with better behavior in terms of what
is found for those algorithms in the training set.

The problem of combining so different evaluations together in such a Frankensteinian
method (term already used by Todd and Werner (1998)) can be solved by multi-objective
optimization techniques. They are able to rank the individuals according to their position
in a fitness space relative to a geometric locus of Pareto-optimal solutions.

The research, still in an early stage, suggests that this is a flexible and powerful al-
gorithmic composition scheme that opens a door to future studies on the influence of
training data and fitness functions in the system’s performance. The developed graphical
interface is an important tool to help in exploring and refining the methodology.

Acknowledgements

This work was supported by the Spanish Ministerio de Educación, Cultura y Deporte
through FPU fellowship (AP2012-0939) and the Spanish Ministerio de Economı́a y Com-
petitividad project TIMuL (No. TIN2013–48152–C2–1–R supported by UE FEDER
funds).

Supplemental online material

There is an Online Supplement where the reader can find some technical details, infor-
mation about the data used, generated melodies, and additional information about the
developed prototype and its performance.

Disclosure statement

The authors have no conflict of interest.

References

Alfonseca, Manuel, Manuel Cebrián, and Alfonso Ortega. 2007. “A simple genetic algorithm for music
generation by means of algorithmic information theory.” In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC 2007, 25-28 September 2007, Singapore, 3035–3042.

Ayesh, Aladdin, and Andrew Hugill. 2005. “Genetic Approaches for Evolving Form in Musical Compo-
sition.” In IASTED International Conference on Artificial Intelligence and Applications, part of the
23rd Multi-Conference on Applied Informatics, Innsbruck, Austria, February 14-16, 2005, 318–321.

Baluja, Shumeet, Dean Pomerleau, and Todd Jochem. 1994. “Towards automated artificial evolution for
computer-generated images.” Connection Science 6 (2-3): 325–354.

Biles, John A. 1994. “GenJam: A genetic algorithm for generating jazz solos.” In Proc. of International
Computer Music Conference, 131–137.

Cambouropoulos, Emilios. 2001. “The Local Boundary Detection Model (LBDM) and its application in
the study of expressive timing.” In Proc. of the International Computer Music Conference, Havana, .

Cope, DavidComputers and musical style. A-R Editions, Inc.
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